
Georgian Education Mine, St. George’s College Aruvithura ISSN 2393 - 9850

© GEM Journal, Vol. 4, No. 1, December 2024 93

Accelerating SDV Transition: Converting Classic Components
to Services

Seth Shaji George
College of Engineering Trivandrum

Nijitha P
College of Engineering Trivandrum

Vaishnavi Ganeshan
College of Engineering Trivandrum

James Joy
Tata Elxsi

Delivery Manager

Abstract

The automotive industry is undergoing a significant transformation due to new technologies like electric
cars, connected systems, autonomous driving, and a focus on sustainability. A key development is Software
Defined Vehicles (SDVs), where features and functions are primarily enabled through software. This project
focuses on converting software components to a service-oriented framework using a system that creates
adaptive AUTOSAR templates. The system requires ARXML files as input to produce a template with pre-
filled adaptive AUTOSAR code, which can be further customized. This method was tested on a door software
system, which includes door hardware, door software, and vehicle components. It successfully generated
about 70% of the needed code. This demonstrates that automatic code generation for service-oriented
architectures can save significant development time and effort. Future improvements could include adding
strong security measures to enhance the safety and reliability of SDVs.

1 Introduction
The automotive industry is changing rapidly with advancements in technology (Lopez-Vega & Moodysson,
2023), which are altering how vehicles are designed, built, and used. Important trends driving this change
include the rise of electric vehicles, improved connectivity, and autonomous driving capabilities. Software
Defined Vehicles (SDVs) (Goswami, 2024) are a major part of this change, shifting the focus from hard-
ware to software. SDVs use advanced software, artificial intelligence, and connectivity to become more like
electronic devices on wheels.

A critical component of SDVs is the adoption of Service-Oriented Architecture (SOA), which enhances
functionality and flexibility. This is a shift from the traditionally used signal-based communication systems.
However, the transition to SOA requires a significant re-engineering of traditional software development ap-
proaches. This research aims to address this challenge by proposing a novel method for converting software
components to a service-oriented framework. As a proof of concept, a system that generates adaptive AU-
TOSAR templates is developed. The system takes necessary ARXML files as input and produces a template
with pre-filled adaptive AUTOSAR code, which users can then customize for their specific needs.

This project demonstrates that automatic code generation for service-oriented architectures can signif-
icantly reduce development time and effort. Future enhancements could focus on adding strong security
measures to ensure the safety and reliability of SDVs, especially as they become more connected and au-
tonomous.

2 Literature Review
Transitioning to Software-Defined Vehicles (SDVs) is a pivotal step for the automotive industry, as it marks
a shift towards software-centric innovation and connectivity-driven advancements. SDVs are transforming
the automotive value chain, emphasizing software as a core driver of innovation. The integration of SDVs
reshapes the industry’s ecosystem by introducing new business models and fostering collaboration between
traditional OEMs and tech firms. Challenges include aligning with industry standards and ensuring seamless
integration. (Liu, Zhang, & Zhao, 2022)

Service-Oriented Architecture (SOA) is a design paradigm that organizes software into modular, interop-
erable services. SOAs are pivotal in SDVs, offering a flexible framework for integrating software modules.

Received : 28 November 2024
Revised : 01 December 2024
Accepted : 04 December 2024

Pages :93-98



ISSN 2393 - 9850

© GEM Journal, Vol. 4, No. 1, December 2024 94

Georgian Education Mine, St. George’s College Aruvithura

This architecture supports variability and facilitates over-the-air updates, enabling continuous vehicle en-
hancement and reducing development costs. (Rumez, Grimm, Kriesten, & Sax, 2020)

Adaptive AUTOSAR is a modern platform designed to address the needs of high-performance computing
in vehicles. It enables features like over-the-air updates, service-oriented communication, and enhanced pro-
cessing power to support autonomous driving and connected systems. Unlike Classic AUTOSAR, Adaptive
AUTOSAR supports parallel processing on multicore and GPU-based hardware, making it more suitable for
dynamic applications. However, challenges include handling nondeterminism and ensuring real-time behav-
ior in service-based environments (Reichart & Asmus, 2021)

3 Design

3.1 Development Stack
Programming Languages: Python for template generation.
Middleware: SOME/IP for communication between services.

3.2 System Design

Figure 1: System design

ARXML files: They describe the adaptive applications and their services, resources, and required execution
environments.
Code Generation Engine: It identifies the events, fields and methods from the ARXML files so as to gener-
ate the necessary service
Adaptive Autosar Service: The identifiers in the code used are meaningful and self-explanatory. The devel-
opers can easily edit the code to suit for their specific needs.

4 Discussion

4.1 Signal Based Communication Vs Service-Oriented Communication
Whether to opt for Signal-Based or Service-Oriented Communication in automotive systems depends on the
specific needs of the domain. These options represent different communication systems employed in the
software and systems design of automobiles.

Signal-based communication, which is employed in Classic AUTOSAR, is facilitated by communication
bus networks such as CAN, FlexRay, MOST, and LIN. It is best suited for applications where software re-
mains relatively static throughout its operational life cycle, like engine control, braking systems, and airbag
control units. It prioritizes stability and deterministic behavior, leveraging the AUTOSAR Runtime Environ-
ment (RTE) for scheduling software components and managing communication between them without the
need for an operating system (OS). This simplicity and predictability make it ideal for safety-critical functions
that demand reliability over the long term.

On the contrary, Service-Oriented Communication, used by Adaptive AUTOSAR, adopts Ethernet and
SOME/IP to enhance communication by utilizing advanced middleware functionalities such as serialization
and Remote Procedure Call (RPC). This setup enables more dynamic interaction among ECU software com-
ponents, facilitating efficient data exchange and coordination. This architecture is designed to handle automo-
tive applications that require flexibility, scalability, and the ability to undergo frequent updates and modifica-
tions. Systems such as infotainment, telematics, advanced driver assistance systems (ADAS), and over-the-air



Georgian Education Mine, St. George’s College Aruvithura ISSN 2393 - 9850

© GEM Journal, Vol. 4, No. 1, December 2024 95

This architecture supports variability and facilitates over-the-air updates, enabling continuous vehicle en-
hancement and reducing development costs. (Rumez, Grimm, Kriesten, & Sax, 2020)

Adaptive AUTOSAR is a modern platform designed to address the needs of high-performance computing
in vehicles. It enables features like over-the-air updates, service-oriented communication, and enhanced pro-
cessing power to support autonomous driving and connected systems. Unlike Classic AUTOSAR, Adaptive
AUTOSAR supports parallel processing on multicore and GPU-based hardware, making it more suitable for
dynamic applications. However, challenges include handling nondeterminism and ensuring real-time behav-
ior in service-based environments (Reichart & Asmus, 2021)

3 Design

3.1 Development Stack
Programming Languages: Python for template generation.
Middleware: SOME/IP for communication between services.

3.2 System Design

Figure 1: System design

ARXML files: They describe the adaptive applications and their services, resources, and required execution
environments.
Code Generation Engine: It identifies the events, fields and methods from the ARXML files so as to gener-
ate the necessary service
Adaptive Autosar Service: The identifiers in the code used are meaningful and self-explanatory. The devel-
opers can easily edit the code to suit for their specific needs.

4 Discussion

4.1 Signal Based Communication Vs Service-Oriented Communication
Whether to opt for Signal-Based or Service-Oriented Communication in automotive systems depends on the
specific needs of the domain. These options represent different communication systems employed in the
software and systems design of automobiles.

Signal-based communication, which is employed in Classic AUTOSAR, is facilitated by communication
bus networks such as CAN, FlexRay, MOST, and LIN. It is best suited for applications where software re-
mains relatively static throughout its operational life cycle, like engine control, braking systems, and airbag
control units. It prioritizes stability and deterministic behavior, leveraging the AUTOSAR Runtime Environ-
ment (RTE) for scheduling software components and managing communication between them without the
need for an operating system (OS). This simplicity and predictability make it ideal for safety-critical functions
that demand reliability over the long term.

On the contrary, Service-Oriented Communication, used by Adaptive AUTOSAR, adopts Ethernet and
SOME/IP to enhance communication by utilizing advanced middleware functionalities such as serialization
and Remote Procedure Call (RPC). This setup enables more dynamic interaction among ECU software com-
ponents, facilitating efficient data exchange and coordination. This architecture is designed to handle automo-
tive applications that require flexibility, scalability, and the ability to undergo frequent updates and modifica-
tions. Systems such as infotainment, telematics, advanced driver assistance systems (ADAS), and over-the-air

(OTA) updates benefit significantly from this model. It supports high-performance and computation-intensive
functionalities. This is facilitated by the POSIX operating system that handles scheduling and manages com-
munication between software components. Service-oriented communication enables automotive systems to
transform rapidly in response to technological advancements and changing consumer demands, making it
well-suited for applications where agility and adaptability are critical.

Adaptive and Classic AUTOSAR coexist in automotive systems. The Classic ECU serves as a gateway,
converting bus signals for the Adaptive ECU. Adaptive AUTOSAR enables dynamic upgrades and flexible
communication through Proxy/Skeleton and Publish/Subscribe approaches. Classic AUTOSAR ensures reli-
ability for real-time tasks and safety applications. Together, they offer complementary solutions to enhance
automotive systems.

a) Proxy/Skeleton:
This pattern involves generating two essential components from a formal service definition. The Service
Proxy serves as a facade for the service consumer, representing the service’s functionalities at the code level.
It simplifies interaction by managing communication with the remote service implementation through a lo-
cal interface. Conversely, the Service Skeleton connects the service implementation to the communication
management transport layer, enabling distributed service consumers to access the service. This component
facilitates requests from remote clients and integrates the service implementation via a structured relation-
ship, providing a clear pathway for application code to interact with the middleware.

b) Publish/Subscribe:
In Service-Oriented Architecture (SOA), the publish/subscribe pattern is an event-driven messaging paradigm.
It enables loose coupling between services, allowing them to communicate with each other in a decoupled
manner. The producers of information (publishers) are decoupled from the consumers (subscribers).

4.2 Implementation
The system developed for this project automates the conversion of software components to a service-oriented
framework. As proof-of-concept, we have taken Adaptive Autosar as the Service-Oriented framework. The
primary objective is to take ARXML files as input and generate a significant portion of the necessary code
automatically. The following steps outline the implementation process:

1. Input Preparation

a) ARXML Files: Collect the necessary ARXML files containing the descriptions of the software
components, their interfaces, and communication patterns. These files are essential for defining
the structure and behaviour of the components in the adaptive AUTOSAR framework.

b) Component Identification: Identify the software components that need to be converted. In this
case, we focused on a door software system, which includes door hardware, door software, and
vehicle components.

2. Parsing ARXML Files
The parser extracts relevant information such as component names, interfaces, and communication
signals. In this project we have used Python ElementTree XML API (xml.etree.ElementTree).

3. Template Generation
Design a set of adaptive AUTOSAR templates that can be pre-filled with the extracted data. These
templates include basic structures for components,services, and communication mechanisms.

4. Customization
Developers can customize the generated code to meet specific requirements. This step involves adding
system-specific logic and fine-tuning the behaviour of the components.

5 Results
The tool developed was successfully tested on a door software system (given in Figure 2), including door
hardware, door software, and vehicle components. Actions like locking and unlocking the door or raising
and lowering the window are generated based on events like rain or a crash, demonstrating the system’s
practical use.



ISSN 2393 - 9850

© GEM Journal, Vol. 4, No. 1, December 2024 96

Georgian Education Mine, St. George’s College Aruvithura

Figure 2: DoorSoftware system for the generated code.

Around 70% of adaptive AUTOSAR code is found to have generated successfully. The rest of the code
can be completed by the developer according to their system-specific logic. This technique significantly
reduces development time, enables code reusability, and reduces complexity.

6 Conclusion
The transition from traditional to software-defined vehicles (SDVs) represents a significant leap forward in
automotive technology. This transformation is enabled by service-oriented architecture (SOA), which con-
verts classic components into modular, interoperable services, thereby enhancing flexibility, scalability, and
innovation within the automotive industry. However, this transition from existing signal-based communi-
cation systems and classic automotive platforms could be time and labour-intensive. This work presents a
method for the automatic code generation for SOA.

7 Future Scope
The proposed method suggests a novel technique for automatic code generation for SOA. However, further
research is needed to improve the efficiency and security of the system. As vehicles become increasingly
connected and reliant on complex software ecosystems, they also become more vulnerable to cyber threats.
Robust security measures are essential to protect against potential breaches that could compromise vehicle
functionality, safety, and user data. Implementing strong encryption, secure communication protocols, and
continuous monitoring is vital to prevent unauthorized access and ensure the integrity of the system. Addi-
tionally, as SOAs enable modular and interconnected services, securing each individual component and the
interfaces between them is crucial to maintain the overall security posture. Prioritizing security in SDVs and
SOAs not only safeguards the vehicle and its occupants but also builds consumer trust, paving the way for
the widespread adoption of advanced automotive technologies.

References
Goswami, P. (2024). The software-defined vehicle and its engineering evolution: Balancing issues and

challenges in a new paradigm of product development.
Liu, Z., Zhang, W., & Zhao, F. (2022, 03). Impact, challenges and prospect of software-defined vehicles. , 3.
Lopez-Vega, H., & Moodysson, J. (2023). Digital transformation of the automotive industry: An integrating

framework to analyse technological novelty and breadth. Industry and Innovation, 30(1), 67–102.
Reichart, G., & Asmus, R. (2021). Progress on the autosar adaptive platform for intelligent vehicles. In

T. Bertram (Ed.), Automatisiertes fahren 2020 (pp. 67–75). Wiesbaden: Springer Fachmedien Wies-
baden.



Georgian Education Mine, St. George’s College Aruvithura ISSN 2393 - 9850

© GEM Journal, Vol. 4, No. 1, December 2024 97

Figure 2: DoorSoftware system for the generated code.

Around 70% of adaptive AUTOSAR code is found to have generated successfully. The rest of the code
can be completed by the developer according to their system-specific logic. This technique significantly
reduces development time, enables code reusability, and reduces complexity.

6 Conclusion
The transition from traditional to software-defined vehicles (SDVs) represents a significant leap forward in
automotive technology. This transformation is enabled by service-oriented architecture (SOA), which con-
verts classic components into modular, interoperable services, thereby enhancing flexibility, scalability, and
innovation within the automotive industry. However, this transition from existing signal-based communi-
cation systems and classic automotive platforms could be time and labour-intensive. This work presents a
method for the automatic code generation for SOA.

7 Future Scope
The proposed method suggests a novel technique for automatic code generation for SOA. However, further
research is needed to improve the efficiency and security of the system. As vehicles become increasingly
connected and reliant on complex software ecosystems, they also become more vulnerable to cyber threats.
Robust security measures are essential to protect against potential breaches that could compromise vehicle
functionality, safety, and user data. Implementing strong encryption, secure communication protocols, and
continuous monitoring is vital to prevent unauthorized access and ensure the integrity of the system. Addi-
tionally, as SOAs enable modular and interconnected services, securing each individual component and the
interfaces between them is crucial to maintain the overall security posture. Prioritizing security in SDVs and
SOAs not only safeguards the vehicle and its occupants but also builds consumer trust, paving the way for
the widespread adoption of advanced automotive technologies.

References
Goswami, P. (2024). The software-defined vehicle and its engineering evolution: Balancing issues and

challenges in a new paradigm of product development.
Liu, Z., Zhang, W., & Zhao, F. (2022, 03). Impact, challenges and prospect of software-defined vehicles. , 3.
Lopez-Vega, H., & Moodysson, J. (2023). Digital transformation of the automotive industry: An integrating

framework to analyse technological novelty and breadth. Industry and Innovation, 30(1), 67–102.
Reichart, G., & Asmus, R. (2021). Progress on the autosar adaptive platform for intelligent vehicles. In

T. Bertram (Ed.), Automatisiertes fahren 2020 (pp. 67–75). Wiesbaden: Springer Fachmedien Wies-
baden.

Rumez, M., Grimm, D., Kriesten, R., & Sax, E. (2020). An overview of automotive service-oriented archi-
tectures and implications for security countermeasures. IEEE Access, 8, 221852-221870.




