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Abstract

The use of CCTV systems for home surveillance generates a large amount of video data, which can make
it difficult to identify rare but important patterns that could indicate potential threats. This research arti-
cle focuses on detecting unusual patterns in CCTV footage, particularly those that are rare. It compares
different advanced K-means clustering approaches, such as Fuzzy C-means (FCM), K-medoids (PAM),
Mini-batch K-means, Bisecting K-means, Kernel K-means, and Weighted K-means. The study uses a di-
verse dataset of real-world CCTV footage from various home environments. By assessing how well these
clustering techniques can detect and analyze rare patterns, the research aims to improve threat detection
and provide insights into the most effective clustering methods for identifying rare patterns.

1 Introduction
Clustering is a fundamental technique in unsupervised learning and data mining(Amin et al., 2023), where
the objective is to group similar data points into clusters based on their features(Amin et al., 2023). This
process is pivotal for identifying inherent structures within data and is widely used in various applications,
including image processing(Amin et al., 2023), segmentation(Ullah, Hussain, Ullah, Lee, & Baik, 2023), and
anomaly detection (De Donato et al., 2023). In anomaly detection, particularly within CCTV footage from
home security systems, clustering plays a crucial role. Anomalies(Guo, Lu, Jia, Zhang, & Li, 2024), or rare
patterns, are data points that deviate significantly from the norm and can indicate potential threats or unusual
activities(Yasin, Tahir, & Frnda, 2023). Identifying these anomalies is essential for enhancing security and
ensuring timely responses to potential threats.

Traditional K-means clustering, a popular and straightforward method, partitions data into a predefined
number of clusters based on proximity to cluster centroids(Jain & Pamula, 2018). While effective for many
applications, standard K-means may struggle to detect rare patterns due to their reliance on mean values
and sensitivity to the number of clusters specified(Liu, 2024). As a result, advanced variations of K-means
have been developed to address these limitations and improve performance in complex scenarios(Zulfauzi,
Dahlan, Sintuya, & Setthapun, 2023). Fuzzy C-means (FCM) introduces the concept of partial membership,
where data points can belong to multiple clusters with varying degrees of membership(Izakian & Pedrycz,
2013). This flexibility is beneficial for capturing subtle anomalies that may not fit neatly into a single cluster.
K-medoids (PAM), on the other hand, select actual data points as cluster centers, which enhances robustness
against noise and outliers, making it suitable for detecting rare patterns that might be overshadowed by more
frequent data(Sureja, Chawda, & Vasant, 2022). Mini-batch K-means offers efficiency for large-scale datasets
by processing small, random subsets of data at a time, which can accelerate clustering without compromising
significant pattern detection(Xiao, Wang, Liu, & Liu, 2018). Bisecting K-means provides hierarchical clus-
tering by recursively splitting clusters, allowing for a more granular analysis that can be particularly useful in
identifying rare patterns across different levels of detail(Gao, 2022). Kernel K-means extends the traditional
approach by applying kernel methods to capture non-linear relationships within the data, offering enhanced
flexibility in modeling complex patterns(Su, Guo, Wu, Jin, & Zeng, 2024). Weighted K-means assign differ-
ent weights to data points, which can improve sensitivity to rare but critical patterns(X. Li, Guan, Deng, &
Li, 2022).

Given the increasing complexity and volume of CCTV footage data, the need for advanced K-means
variations becomes evident. These methods offer enhanced capabilities for rare pattern mining, enabling
more accurate and effective detection of anomalies in home security contexts. This study explores these
advanced clustering techniques, assessing their efficacy in identifying and analyzing rare patterns within a
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comprehensive dataset of real-world CCTV footage(Kaur, Rani, & Kaur, 2024). The goal is to advance the
state of anomaly detection in home security systems, ultimately contributing to more effective surveillance
and threat management..

2 Literature Review
Weighted K-means Weighted K-means assign different weights to data points, allowing them to handle
varying importance or frequencies of points. The process begins by assigning weights to each data point.
Then, in each iteration of the algorithm, the weighted data points are used to update the centroids(Premkumar
et al., 2024). The algorithm continues to adjust the centroids until convergence is reached, meaning the
centroids no longer change significantly from one iteration to the next.

Fuzzy C-means (FCM) Unlike K-means, which assigns each point to exactly one cluster, Fuzzy C-means
allows each data point to belong to multiple clusters with varying degrees of membership(J. Li, Izakian,
Pedrycz, & Jamal, 2021). This is particularly useful when clusters overlap. The algorithm starts by initializing
a membership matrix, where each entry indicates the degree to which a data point belongs to a specific
cluster, with values randomly assigned between 0 and 1. During each iteration, the centroids of the clusters
are recalculated using a weighted average, where the weights come from the membership values. After
updating the centroids, the membership matrix is revised by adjusting the degree of membership for each
data point based on its distance to the centroids data points closer to a centroid have a stronger membership
in that cluster(Luo et al., 2024). This process continues iteratively until the algorithm converges, meaning the
centroids and membership values no longer change significantly.

K-medoids (PAM) K-medoids, or Partitioning Around Medoids, is similar to K-means but uses actual
data points as cluster centers (medoids), making it more robust to outliers(Best, Foo, & Tian, 2022). The
algorithm begins by randomly selecting k medoids from the data set(Best et al., 2022). Then, each data
point is assigned to the nearest medoid, forming clusters(Best et al., 2022). After the initial assignment, for
each medoid, the algorithm checks if swapping the medoid with any other data point in the cluster improves
the clustering quality(Best et al., 2022). Specifically, it tests if the swap reduces the total distance between
the data points and their assigned medoid(Best et al., 2022). This process of swapping and reassignment is
repeated until no further improvements can be made, meaning the total distance of points to their medoids
can no longer be reduced. The result is a stable clustering where each data point is assigned to its nearest
medoid(Best et al., 2022).

Mini-batch K-means Mini-batch K-means(Wang, Zhou, & Li, 2020) reduces the computational load
by using small, random subsets (mini-batches) of the data to update cluster centers, making it suitable for
large datasets. It begins by randomly initializing k cluster centers. Instead of using the entire dataset in each
iteration, the algorithm selects a random subset of the data, known as a ”mini-batch” (Wang et al., 2020).
Each point in this mini-batch is assigned to the nearest cluster center based on a predefined distance metric
(usually Euclidean distance) (Wang et al., 2020). After assignment, the cluster centers are updated based
on the points in the mini-batch, rather than the entire dataset. This process is repeated iteratively until the
algorithm converges, meaning that the cluster centers stop changing significantly(Wang et al., 2020).

Bisecting K-means Bisecting K-means combines hierarchical and partitional clustering approaches (Chen
et al., 2021). It iteratively splits clusters to form a binary tree of clusters. It starts by treating all data points
as a single cluster (Chen et al., 2021). In each iteration, the algorithm selects a cluster to split and applies
the K-means algorithm with k = 2 to divide it into two sub-clusters (Chen et al., 2021). This splitting pro-
cess continues until the desired number of clusters is reached (Chen et al., 2021). By focusing on splitting
one cluster at a time, this algorithm provides a more balanced and efficient way of clustering large datasets
compared to the standard K-means, especially for cases where the number of clusters is predefined(Chen et
al., 2021).

Kernel K-means Kernel K-means extends the algorithm (Ikotun, Ezugwu, Abualigah, Abuhaija, & Hem-
ing, 2023) to operate in a higher-dimensional space using kernel functions (Ikotun et al., 2023), allowing it
to capture non-linear relationships. The data is first mapped into a higher-dimensional space using a kernel
function (Ikotun et al., 2023), which allows linear separability in the transformed space. Once the data is
mapped, the standard K-means algorithm is applied in this new space (Ikotun et al., 2023). The cluster as-
signments are computed, and centroids are updated in this kernel space, enabling the algorithm to capture
complex, non-linear relationships in the data(Ikotun et al., 2023).

K-means++ K-means++ improves the initialization step of K-means by carefully choosing initial cluster
centers to accelerate convergence and improve the clustering result. It selects initial centroids distant from
each other, reducing the likelihood of poor clustering (Zulfauzi et al., 2023). The first centroid is chosen
randomly from the data points (Zulfauzi et al., 2023). For each subsequent centroid, the algorithm calculates
the distance between each point and the nearest existing centroid, then selects the next centroid from the data
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the K-means algorithm with k = 2 to divide it into two sub-clusters (Chen et al., 2021). This splitting pro-
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ing, 2023) to operate in a higher-dimensional space using kernel functions (Ikotun et al., 2023), allowing it
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mapped, the standard K-means algorithm is applied in this new space (Ikotun et al., 2023). The cluster as-
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K-means++ K-means++ improves the initialization step of K-means by carefully choosing initial cluster
centers to accelerate convergence and improve the clustering result. It selects initial centroids distant from
each other, reducing the likelihood of poor clustering (Zulfauzi et al., 2023). The first centroid is chosen
randomly from the data points (Zulfauzi et al., 2023). For each subsequent centroid, the algorithm calculates
the distance between each point and the nearest existing centroid, then selects the next centroid from the data

points with a probability proportional to the square of these distances (Zulfauzi et al., 2023).
Extended versions of K-means clustering provide enhanced flexibility, robustness, and accuracy, making

them suitable for a wider range of applications(Lu et al., 2024). Each variant addresses specific limitations
of the traditional K-means algorithm, offering solutions for improved initialization, handling overlapping
clusters, robustness to outliers, scalability, hierarchical structure, complex data structures, non-linear rela-
tionships, and weighted importance of data points(Thiyagarajan & Murugan, 2023).

3 Design
Preprocessing phase: A one-hour .dav video file is processed to extract frames at one-second intervals, creat-
ing a dataset of unique frames (Fan, Xia, Liu, & Li, 2021).
Feature extraction phase: The Mask R-CNN model, powered by the ResNet50 backbone, is employed to
segment and identify human subjects in each extracted frame (Fan et al., 2021).
This method integrates the recognition of family members and enables the detection of potential intruders
within the recorded surveillance footage.

Figure 1: Schematic Diagram

Figure 1 shows the video analysis pipeline takes an input Video, which is the starting point of the pipeline.
The input video is the raw data that will be processed. Frame Extraction Service extracts individual frames
from the input video. These frames serve as the basic units for subsequent analysis. Frame Storage is where
the extracted frames are stored for future reference and processing. Mask R-CNN Model: This is a deep
learning model (Fan et al., 2021) that is used to detect and segment objects within each frame. It can identify
human subjects and other relevant objects. The model’s output is filtered to discard frames or regions that do
not contain human subjects. The frames containing human subjects are selected for further analysis. Different
possible clustering algorithms are applied to group similar human subjects or behaviors together. This can
help identify patterns or anomalies. there is a clustered data is stored for future analysis or visualization. Rare
Pattern Mining, techniques are applied to identify rare or unusual patterns within the clustered data. These
patterns might indicate anomalies or interesting behaviors. The final analysis results, including identified
patterns and insights, are stored for future reference or reporting.

4 Discussion
The dataset utilized in this study comprises 10,800 frames, distributed in three different datasets, which were
collected from three distinct cameras. This comprehensive collection of frames ensures a diverse range of
scenes and activities, providing a robust basis for analyzing and detecting anomalies. By integrating footage
from multiple cameras, the dataset captures a variety of perspectives and contexts, enhancing the depth and
accuracy of the rare pattern mining process.

The study utilizes TPU v2-8 running plateform is a high-performance processing unit specifically de-
signed for machine learning workloads. It features a configuration with 8 TPU cores, each engineered to
deliver high-throughput, low-latency computation. In terms of processing power, each individual TPU v2
core provides 45 teraflops (TFLOPS) for 16-bit floating-point operations, which totals 180 TFLOPS when
utilizing all eight cores together. This capacity allows the TPU v2-8 to handle the intensive computations
typical in machine learning models efficiently.

Weighted K-means Figures 2 illustrate the implementation of Weighted K-means on Data sets 1, 2, and
3, respectively. Each image is reshaped into a 1D array, and KMeans clustering is applied with specified
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Figure 2: Weighted K-means on Data set 1, 2, and 3

parameters: num clusters=4 (number of clusters), max iter=50 (maximum iterations per clustering
run), and n init=10 (number of initializations to find the best cluster configuration). Finally, images are
saved into directories corresponding to their assigned clusters, allowing for organization based on visual
similarities within the data. The figures include scatter plots that visualize how rare and frequent frames are
distributed.

Fuzzy C-means Figures 3 showcase the ongoing application of the Fuzzy C-means to Data sets 1, 2, and
3, correspondingly. Each image is reshaped to a 1D array, and clustering is performed with parameters such as
num clusters=4 (number of clusters), error=0.005 (convergence threshold), and maxiter=1000
(maximum iterations). The images are then saved into directories according to their assigned clusters, facili-
tating organization based on visual similarity within the data. The figures showcase scatter plots highlighting
the spatial distribution of frames classified as rare or frequent.

K-medoids Figures 4 illustrate the consistent use of K-medoids on Data sets 1, 2, and 3. Each image is
reshaped into a 1D array, and clustering is performed with parameters such as num clusters=4 (number
of clusters) and max iter=300 (maximum iterations). Finally, the images are saved into directories corre-
sponding to their assigned clusters, facilitating organization based on visual similarity within the data. The
visualizations emphasize the distinction between frames that appear frequently and those that are rare.

Mini-batch K-means Figures 5 exemplify the continuous utilization of Mini-batch K-means on Data sets
1, 2, and 3, respectively. Each image is reshaped into a 1D array, and clustering is applied with parameters
such as num clusters=4 (number of clusters) and batch size=100 (number of samples per batch).
Finally, images are saved into directories corresponding to their assigned clusters, facilitating organization
by visual similarity within the data. These figures provide a visual representation of how rare and frequent
frames are arranged.

Bisecting K-means Figures 6 exemplify the implementation of Bisecting K-means on Data sets 1, 2, and
3, respectively. Each image is flattened into 2D arrays and iteratively splitting clusters based on variance.
Each image is assigned to one of the resulting clusters. The parameter num clusters specifies the desired
number of final clusters, set to 4 in the code. The KMeans algorithm is used with n clusters=2 to split
clusters, while init=’k-means++’ ensures efficient centroid initialization. Additionally, max iter=100
limits iterations, n init=10 runs the algorithm multiple times for stability, and random state=0 ensures
reproducibility. The images are then saved in separate directories based on their cluster labels. The figures
illustrate how rare and frequent frames are distributed.

Kernel K-means Figures 7 shows the implementation of the Kernel K-means to Data sets 1, 2, and 3, cor-
respondingly. Each image is flattened into 2D arrays. The parameter gamma controls the spread of the RBF
kernel, with a lower value indicating a wider influence, set to 0.1 in the code. The num clusters param-
eter specifies the number of clusters for the KMeans algorithm, which is set to 4 for the image dataset. The
KMeans algorithm is configured with max iter=50 for the maximum number of iterations and n init=5
to run the algorithm 5 times with different initializations to ensure stability. The figures visually represent the
organization of rare and frequent frames.

K-means++ Figures 8 show the utilization of K-means++ on Data sets 1, 2, and 3, respectively. Each
image is flattened into 2D arrays. The num clusters parameter defines the number of clusters for the
KMeans algorithm, set to 4 in this case, which determines the number of image groupings. The KMeans algo-
rithm is initialized using init=’k-means++’ to improve the selection of initial centroids, with max iter=300
allowing up to 300 iterations and n init=10 running the algorithm 10 times to ensure optimal results. The
random state=0 ensures reproducibility of the clustering results by controlling the random initialization
process. The figures provide a visual representation of how rare and frequent frames are structured.
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parameters: num clusters=4 (number of clusters), max iter=50 (maximum iterations per clustering
run), and n init=10 (number of initializations to find the best cluster configuration). Finally, images are
saved into directories corresponding to their assigned clusters, allowing for organization based on visual
similarities within the data. The figures include scatter plots that visualize how rare and frequent frames are
distributed.

Fuzzy C-means Figures 3 showcase the ongoing application of the Fuzzy C-means to Data sets 1, 2, and
3, correspondingly. Each image is reshaped to a 1D array, and clustering is performed with parameters such as
num clusters=4 (number of clusters), error=0.005 (convergence threshold), and maxiter=1000
(maximum iterations). The images are then saved into directories according to their assigned clusters, facili-
tating organization based on visual similarity within the data. The figures showcase scatter plots highlighting
the spatial distribution of frames classified as rare or frequent.

K-medoids Figures 4 illustrate the consistent use of K-medoids on Data sets 1, 2, and 3. Each image is
reshaped into a 1D array, and clustering is performed with parameters such as num clusters=4 (number
of clusters) and max iter=300 (maximum iterations). Finally, the images are saved into directories corre-
sponding to their assigned clusters, facilitating organization based on visual similarity within the data. The
visualizations emphasize the distinction between frames that appear frequently and those that are rare.

Mini-batch K-means Figures 5 exemplify the continuous utilization of Mini-batch K-means on Data sets
1, 2, and 3, respectively. Each image is reshaped into a 1D array, and clustering is applied with parameters
such as num clusters=4 (number of clusters) and batch size=100 (number of samples per batch).
Finally, images are saved into directories corresponding to their assigned clusters, facilitating organization
by visual similarity within the data. These figures provide a visual representation of how rare and frequent
frames are arranged.

Bisecting K-means Figures 6 exemplify the implementation of Bisecting K-means on Data sets 1, 2, and
3, respectively. Each image is flattened into 2D arrays and iteratively splitting clusters based on variance.
Each image is assigned to one of the resulting clusters. The parameter num clusters specifies the desired
number of final clusters, set to 4 in the code. The KMeans algorithm is used with n clusters=2 to split
clusters, while init=’k-means++’ ensures efficient centroid initialization. Additionally, max iter=100
limits iterations, n init=10 runs the algorithm multiple times for stability, and random state=0 ensures
reproducibility. The images are then saved in separate directories based on their cluster labels. The figures
illustrate how rare and frequent frames are distributed.

Kernel K-means Figures 7 shows the implementation of the Kernel K-means to Data sets 1, 2, and 3, cor-
respondingly. Each image is flattened into 2D arrays. The parameter gamma controls the spread of the RBF
kernel, with a lower value indicating a wider influence, set to 0.1 in the code. The num clusters param-
eter specifies the number of clusters for the KMeans algorithm, which is set to 4 for the image dataset. The
KMeans algorithm is configured with max iter=50 for the maximum number of iterations and n init=5
to run the algorithm 5 times with different initializations to ensure stability. The figures visually represent the
organization of rare and frequent frames.

K-means++ Figures 8 show the utilization of K-means++ on Data sets 1, 2, and 3, respectively. Each
image is flattened into 2D arrays. The num clusters parameter defines the number of clusters for the
KMeans algorithm, set to 4 in this case, which determines the number of image groupings. The KMeans algo-
rithm is initialized using init=’k-means++’ to improve the selection of initial centroids, with max iter=300
allowing up to 300 iterations and n init=10 running the algorithm 10 times to ensure optimal results. The
random state=0 ensures reproducibility of the clustering results by controlling the random initialization
process. The figures provide a visual representation of how rare and frequent frames are structured.

Figure 3: Fuzzy C-means on Data set 1, 2, and 3

Figure 4: K-medoids on Data set 1, 2, and 3

Figure 5: Mini-batch K-means on Data set 1, 2, and 3

Figure 6: Bisecting K-means on Data set 1, 2, and 3
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Figure 7: Kernel K-means on Data set 1, 2, and 3

Figure 8: K-means++ on Data set 1, 2, and 3

5 Results
Table1 provides a comparative analysis of different clustering techniques for identifying rare patterns in data.
Each row represents a unique clustering algorithm, while the columns show various performance metrics to
assess the efficacy of each technique. The clustering techniques analyzed include Kernel K-means (Ikotun et
al., 2023), Mini-batch K-means (Wang et al., 2020), K-means++ (Zulfauzi et al., 2023), K-medoids (PAM)
(Best et al., 2022), Weighted K-means (Premkumar et al., 2024), Bisecting K-means (Chen et al., 2021),
and Fuzzy C-means (J. Li et al., 2021). Each of these techniques has its unique approach to clustering data,
which can impact its performance in detecting rare patterns. The Frames Extracted column indicates the total
number of frames used in the study, with a consistent value of 10,800 across all techniques. This provides
a standardized dataset size, ensuring that each technique has an equal opportunity to identify patterns. The
Human Subject Extracted column lists the number of patterns (1,273) identified by Mask-RCNN-Resnet50-
fpn-3x model, serving as a reference to evaluate the clustering algorithms’ accuracy. The Actual Rare Patterns
column displays the ground truth, with 37 rare patterns confirmed by human experts. This value remains
constant across techniques and serves as a baseline to assess the predicted rare patterns.

The Predicted Rare Patterns column shows the number of rare patterns each algorithm identified, with
all techniques predicting 37 patterns. This alignment with the actual rare pattern count suggests that each
algorithm was calibrated to match the expected number of patterns. However, the true effectiveness of each
algorithm lies in the accuracy and error rates in identifying these patterns. The True Predictions column
captures the number of correct predictions, indicating each algorithm’s success in identifying genuine rare
patterns. For instance, Fuzzy C-means achieved the highest number of correct predictions, suggesting it
performed well in accurately identifying rare patterns. In contrast, techniques like Kernel K-means and
Mini-batch K-means have lower true prediction counts, indicating a less precise identification capability.
Finally, the False Predictions column displays the count of incorrect rare pattern identifications. A lower
false prediction count implies greater accuracy, as fewer incorrect patterns were mistakenly labeled as rare.
Fuzzy C-means again stands out with only 4 false predictions, suggesting it is the most reliable algorithm
among the techniques tested. Bisecting K-means also performs well with 9 false predictions, while other
methods, like Kernel K-means and K-medoids, have higher false prediction counts, indicating a tendency to
misidentify non-rare patterns as rare. The resultant sample figures of rare patterns are detailed in Figure 9.
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Figure 8: K-means++ on Data set 1, 2, and 3
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patterns. For instance, Fuzzy C-means achieved the highest number of correct predictions, suggesting it
performed well in accurately identifying rare patterns. In contrast, techniques like Kernel K-means and
Mini-batch K-means have lower true prediction counts, indicating a less precise identification capability.
Finally, the False Predictions column displays the count of incorrect rare pattern identifications. A lower
false prediction count implies greater accuracy, as fewer incorrect patterns were mistakenly labeled as rare.
Fuzzy C-means again stands out with only 4 false predictions, suggesting it is the most reliable algorithm
among the techniques tested. Bisecting K-means also performs well with 9 false predictions, while other
methods, like Kernel K-means and K-medoids, have higher false prediction counts, indicating a tendency to
misidentify non-rare patterns as rare. The resultant sample figures of rare patterns are detailed in Figure 9.

Figure 9: Rare patterns extracted from surveillance videos
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Table 1: Comparison of Clustering Techniques for Rare Pattern Detection

Clustering Frames Human subject Actual Predicted True False
techniques extracted extracted rare patterns rare patterns Predictions Predictions

Kernel K-means 10,800 1273 37 37 17 20
Mini-batch K-means 10,800 1273 37 37 19 18
K-means++ 10,800 1273 37 37 21 16
K-medoids (PAM) 10,800 1273 37 37 21 16
Weighted K-means 10,800 1273 37 37 24 13
Bisecting K-means 10,800 1273 37 37 28 9
Fuzzy C-means 10,800 1273 37 37 33 4

Figure 10 provides a comparative evaluation of various clustering techniques. The evaluation is based
on two key metrics: the percentage of correct predictions and the percentage of missing predictions. The
analysis reveals a trend where the accuracy of correct predictions generally increases as we move from Kernel
K-means (Ikotun et al., 2023) to Fuzzy C-means (J. Li et al., 2021). Specifically, Kernel K-means (Ikotun
et al., 2023) and Mini-batch K-means (Wang et al., 2020) demonstrate lower rates of correct predictions (46
percent and 51 percent, respectively), while more advanced techniques like K-means++ (Zulfauzi et al., 2023)
and K-medoids (PAM) (Best et al., 2022) show moderate improvement with a 57 percent accuracy rate. The
accuracy improves with Weighted K-means (Premkumar et al., 2024) (65 percent) and Bisecting K-means
(Chen et al., 2021) (76 percent), ultimately peaking with Fuzzy C-means (J. Li et al., 2021), which achieves
an 89 percent correct prediction rate. On the other hand, the occurrence of missing predictions decreases
progressively across the methods, starting from 54 percent with Kernel K-means (Ikotun et al., 2023) and
reducing to 11 percent with Fuzzy C-means (J. Li et al., 2021), indicating that Fuzzy C-means (J. Li et al.,
2021) is the most effective in minimizing incorrect clustering.

Figure 10: Average Performance

6 Conclusion
The analysis shows that Fuzzy C-means (J. Li et al., 2021) is the most robust clustering method among those
evaluated, offering the highest accuracy in correct predictions while also significantly minimizing missing
predictions. This suggests that Fuzzy C-means (J. Li et al., 2021) is well-suited for complex clustering tasks,
particularly in scenarios where precision is critical. In contrast, Kernel K-means (Ikotun et al., 2023) and
Mini-batch K-means (Wang et al., 2020) are less effective, showing lower accuracy and a higher rate of
missing predictions. Therefore, in practical applications, particularly those involving intricate data like video
analysis, Fuzzy C-means (J. Li et al., 2021) would be the preferred choice due to its superior performance.
Looking forward, several enhancements could further improve clustering outcomes. One approach is to
explore hybrid models that combine the strengths of different clustering algorithms, potentially enhancing
accuracy and reducing errors even further.
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